Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

UDC 004.4
DOI https://doi.org/10.32782/2663-5941/2025.4.2/07

Burchak PV,
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

Oleshchenko L.M.
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

MACHINE LEARNING SOFTWARE FRAMEWORK FOR PREDICTING
AND OPTIMIZING WEB APPLICATION PERFORMANCE

The article introduces a software framework for analyzing and predicting the performance of web
applications using machine learning (ML) techniques. Instead of relying solely on traditional performance
testing, an automated pipeline has been introduced that has collected, processed, and modeled key system
metrics — such as server response time, memory usage, CPU load, and UI responsiveness — to proactively
identify and address performance issues. The dataset used in the study has been gathered from real-world web
applications and has included over 200,000 performance records, encompassing web page load time, layout
recalculations, JavaScript memory usage, and network throughput.

Multiple ML algorithms have been integrated into the modeling pipeline, including linear regression
(LR), polynomial regression, decision trees, and neural networks (NN), to compare their effectiveness in
forecasting application performance. Experimental results have shown that LR has achieved the best overall
performance (MAE = 187.25, R?> = 0.9357), indicating a strong linear correlation in the data. Neural network
also demonstrated high accuracy and advantages in modeling more dynamic, nonlinear behaviors. Proposed
developed software framework has been implemented using Python technologies, such as Pandas, NumPy,
Matplotlib, Seaborn, Scikit-learn, and TensorFlow.

The research has resulted in a scalable, automated, and interpretable software solution for predictive
diagnostics and performance optimization of web applications. Proposed software system has also generated
categorized web applications performance reports with actionable recommendations. The research results have
confirmed the feasibility and effectiveness of incorporating machine learning into modern web applications
performance monitoring workflows.

Key words: software framework, software performance monitoring, machine learning, predictive
analytics, web systems optimization, regression models, neural network, Python, TensorFlow, web application
performance forecasting.

Formulation of the problem. In the modern dig-
ital landscape, the performance of web applications
plays a crucial role in determining the success of soft-
ware products. Fast load times, responsiveness, and
system stability directly impact user satisfaction and
a company’s competitiveness. With the increasing
number of users, the variety of devices, and the com-
plexity of server-client interactions, evaluating and
maintaining optimal performance levels has become
a significant challenge.

Traditional methods, such as manual testing or
standard automated scripts, often fall short when it
comes to handling large volumes of data or adapting
to dynamic conditions like network delays, traffic
spikes, or shifts in user behavior. As web applications
grow more sophisticated, performance becomes a

© Burchak P.V., Oleshchenko L.M., 2025
Crarts nommproerbest Ha ymoBax Jinensii CC BY 4.0

48| Tom 36 (75) N 4 2025

vital component of both user experience and business
outcomes.

Research indicates that even a one-second delay
in page loading can lead to a 7% drop in conversions,
while more than half of mobile users abandon websites
that take over three seconds to load. Search engines
like Google factor in site speed when ranking content.
Industry experience demonstrates that implementing
optimizations — such as reducing HTTP requests, com-
pressing resources, and applying caching techniques —
can cut load times by 20-50%, leading to better reten-
tion and overall performance. Recently, machine
learning (ML) has emerged as a promising solution,
enabling predictive load analysis and adaptive resource
management, thus enhancing performance without
requiring major infrastructure upgrades.

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

Evaluating the performance of web applications
remains a critical challenge in contemporary software
engineering, as system efficiency directly impacts both
user satisfaction and business outcomes. A wide range
of techniques is employed in this domain, including
analytical frameworks, empirical testing, and ML
approaches. Conventional performance evaluation
typically relies on metrics such as server response
time, requests per second (RPS), and resource utiliza-
tion (CPU, memory, and network bandwidth). Tools
like Apache JMeter, New Relic, and Dynatrace pro-
vide valuable outcomes into system behavior, though
they often lack capabilities for forecasting future loads
or uncovering subtle performance trends. In response
to these limitations, ML-based methods have gained
popularity for their ability to analyze and predict
application behavior more accurately.

Techniques such as linear and polynomial regres-
sion, decision trees, neural networks, and ensemble
models have proven effective in detecting anomalies
and forecasting performance issues. The research
indicates that deep neural networks can outperform
traditional models by 15-30% in prediction accuracy.

Another emerging area is the application of rein-
forcement learning for dynamic, real-time adjustment
of system parameters, with some studies reporting up
to 40% reduction in average response times.

Modern strategies for performance analysis are
moving toward a hybrid approach that combines classi-
cal monitoring tools with intelligent ML models. Ongo-
ing challenges include model interpretability, the need
for extensive training datasets, and ensuring adaptabil-
ity across various web application architectures.

This research focuses on creating a software-based
solution for testing and evaluating the performance of
web applications by integrating ML techniques, par-
ticularly regression models and neural networks.

Regression models help uncover key patterns and
measure the influence of performance factors, while
neural networks offer deeper outcomes into complex,
nonlinear relationships in large datasets. This com-
bined approach enables both real-time evaluation and
performance forecasting under dynamic conditions.

The proposed method is designed to be scalable
and efficient, capable of handling increased data vol-
umes without compromising speed or accuracy.

Analysis of recent research and publications.
The study in the article [1] demonstrated that among
the existing approaches to regression testing of web
applications, no single method consistently outper-
forms the others, as their effectiveness largely depends
on various factors and deployment environments.
The research emphasizes the importance of evaluat-

ing these methods not only by technical parameters
but also by their cost-effectiveness. In the article [2],
a performance evaluation methodology for web pages
is proposed, leveraging ML algorithms to enhance the
accuracy and efficiency of assessing web resource qual-
ity. A systematic literature review covering 2010-2024
identified 59 key factors affecting website perfor-
mance. The proposed model integrates a wide range
of metrics — such as usability, accessibility, content rel-
evance, visual appeal, and technical characteristics —
enabling it to overcome the limitations of traditional
approaches. The study showed that SVM algorithms
achieved the highest prediction accuracy (89%) after
feature selection, compared to 87% without it. Ran-
dom Forest models also saw a slight improvement,
from 80% to 81%. The use of feature selection signif-
icantly improved model performance, highlighting the
value of selecting influential predictors. This approach
enables the automation of web performance evaluation
and prediction of potential issues at the development
stage, supporting more informed decision-making and
setting new research benchmarks.

A systematic review in the article [3] presents
an overview of current methods and strategies for
regression testing of web applications, covering areas
such as test prioritization, selection, and adapta-
tion to dynamic environments. The review includes
both classical and modern techniques, such as auto-
mated testing and change analysis tools. The results
of research [4] indicate that optimizing non-func-
tional performance attributes like speed, startup time,
memory usage, and energy consumption is essential
to improving user satisfaction with mobile applica-
tions. The authors also identify existing optimization
techniques and research gaps for future exploration.
According to the article [5], key design aspects — such
as interface simplicity, navigability, content readabil-
ity, feedback mechanisms, personalization, and aes-
thetic design — strongly influence users’ perceptions
of usability and utility, which in turn affects their
engagement and satisfaction.

In the article [6], the authors examine performance
optimization methods including caching, compres-
sion, CDNs, and tools like WebPageTest and Y Slow,
aimed at assisting developers in improving website
speed and search engine visibility.

The study in the article [7] focuses on enhancing
trace visualization for analyzing microservices per-
formance by addressing the shortcomings of existing
tools and introducing new techniques for better diag-
nostic efficiency.

The work [8] explores how Dynatrace monitoring
data can be used to develop performance models for

ISSN 2663-5941 (Print), ISSN 2663-595X (Online)

49

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

Java EE applications, aiming to improve performance
understanding and modeling precision.

The research [9] presents methods for optimiz-
ing the performance of web application state man-
agement, with a particular focus on improving
responsiveness and reducing resource consumption.
Through experimental evaluation of various state
management strategies — such as client-side caching,
minimizing state mutations, and asynchronous state
updates — the authors demonstrate measurable gains
in load time, memory usage, and CPU efficiency. The
results confirm that careful architectural decisions in
managing application state can significantly enhance
overall performance, particularly in complex and
dynamic web environments.

Across the reviewed literature, the main chal-
lenges in regression analysis of web application per-
formance include the difficulty of adapting traditional
testing approaches to dynamic, component-based
architectures; minimizing test suite size while main-
taining adequate coverage; prioritizing tests to detect
critical defects more effectively; and automating the
testing process — particularly for interactive elements
like GUIs and JavaScript components.

Researchers also point to the high time and
resource costs of large-scale regression testing and
emphasize the need for tools that address both func-
tional and non-functional aspects of performance.
As application load or user numbers grow, predict-
ing system behavior under future conditions becomes
crucial. The nonlinear relationships between param-
eters such as requests per second, hardware resource
usage, and average server response time complicate
traditional analysis approaches, highlighting the need
for more adaptive and flexible evaluation techniques
that can account for these complex interdependencies.

Task statement. The goal of the research is to
develop a performance evaluation software tool that
automates analysis, detects system bottlenecks, and
anticipates potential issues before they impact func-
tionality. The key tasks include reviewing existing
methods to identify their strengths and limitations;
selecting a core set of performance metrics — such as
response time, server latency, and resource usage —
that provide meaningful outcomes; building and train-
ing ML models to generate predictive analytics; and
developing a software framework that brings all these
elements together into an integrated, usable solution.

The resulting software system must encompasses
every stage of performance analysis — from data gath-
ering to classification and reporting — delivering a
unified and scalable method. It also must provides
actionable recommendations to improve perfor-

50| Tom 36 (75) N2 4 2025

mance, including API optimization, asynchronous
request handling, and reduction of data transfer vol-
ume and code complexity.

Outline of the main material of the research. To
evaluate the performance of web applications, data
containing over 200,000 real user records was selected
for in-depth analysis of various performance aspects.
The Chrome User Experience Report (CrUX) offers a
valuable source of real-world performance data, gath-
ered directly from users of the Chrome browser.

Unlike synthetic testing methods or controlled lab
environments, CrUX reflects how websites actually
perform under diverse real-life conditions, including
different devices, network types, and geographic loca-
tions. This makes it an essential resource for studying
web performance, enhancing user experience, and
improving frontend efficiency.

The dataset features critical performance metrics
such as First Contentful Paint (FCP), Largest Con-
tentful Paint (LCP), First Input Delay (FID), Cumula-
tive Layout Shift (CLS), and Interaction to Next Paint
(INP). These metrics align closely with Google’s
Core Web Vitals, which serve as key indicators for
assessing responsiveness and visual stability of web
applications.

Since CrUX data is updated monthly, it enables
continuous tracking of performance trends, identifi-
cation of regressions, and assessment of the effects of
UI or backend changes on user experience.

One of CrUX’s major strengths lies in its ability
to filter data by various dimensions, including device
type (mobile, desktop, tablet), geographic region, and
network quality (e.g., 3G, 4G). This flexibility allows
for targeted analysis of specific user segments and
helps identify performance issues affecting particu-
lar demographics. As the dataset is hosted on Google
BigQuery, researchers can execute scalable SQL que-
ries without the need for manual file handling, mak-
ing it ideal for large-scale performance evaluations.

To analyze and model web application perfor-
mance using Python, a variety of libraries and tools
were utilized. Pandas was employed for convenient
data manipulation in tabular format, while Numpy
handled efficient numerical computations. For visual-
izing data and exploring inter-variable relationships,
Matplotlib and Seaborn were applied. Regression
models were developed using Scikit-learn, including
LinearRegression for linear modeling, Polynomial-
Features for polynomial expansion, and Standard-
Scaler for data normalization.

Accuracy evaluation was carried out using metrics
such as mean absolute error (MAE), mean squared
error (MSE), and the coefficient of determination

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

(R?). To construct NN, TensorFlow was used — specif-
ically, the Sequential API and Dense layers — to cap-
ture non-linear dependencies in the data and compare
these findings to regression results.

TensorFlow proved beneficial due to its flexible
architecture, which supports deployment on CPUs,
GPUs, and TPUs, as well as mobile and embedded
systems. This scalability makes it suitable for both
small-scale experiments and complex production
environments.

The research focused on a set of key performance
indicators most relevant to evaluating web applica-
tion performance. These included: onloadtime (total
page load time including all resources), dominterac-
tive (time at which the page becomes interactive), and
domcontentloadedeventend (time after the HTML is
fully parsed, before all media loads). Additional met-
rics involved layoutcount (number of layout recalcu-
lations), jsheaptotalsize (JavaScript memory usage),
img _initiated transfer size and css_initiated trans-
fer size (network sizes for images and CSS), and
numberofrequests (total server requests triggered
during load). To streamline processing and improve
analysis efficiency, the dataset was reduced to include
only the most relevant parameters. This helped focus
the evaluation specifically on metrics that most sig-
nificantly impact web application performance.

The selected data, stored in float64 format across
10,000 records, allowed for detailed dependency
analysis and accurate regression modeling.

For model training and testing, the dataset was
divided using an 80/20 split via the train_test split func-
tion (with random_state=42 for reproducibility). Train-
ing was conducted using a GPU-based setup (NVIDIA
T4/P100), with 12 GB of RAM and 2 vCPUs, which
significantly accelerated the learning process.

This research proposes a software-driven meth-
odology for assessing web application performance
through the use of ML techniques. It addresses both the
structural components and predictive modeling of per-
formance, aiming to detect inefficiencies and forecast
issues before they negatively affect user experience.

The approach starts with selecting critical perfor-
mance indicators such as response time, memory and
CPU usage, network speed, full load time, time to
interactivity, layout recalculations, JavaScript mem-
ory consumption, and the number of server requests.
These metrics were chosen for their practical impor-
tance in evaluating real-world application behavior.
To facilitate data acquisition, custom software agents
and backend services were implemented, enabling
continuous monitoring of application activity. After
collection, the data was cleaned and prepared using

Python libraries to ensure quality and consistency
for analysis. The modeling process incorporated ML
algorithms — including linear and polynomial regres-
sion, decision tree, and neural network — to identify
anomalies and predict potential performance drops.

This methodology offers a replicable and scalable
framework that integrates automated data gathering,
feature extraction, and predictive analysis. It provides
a robust foundation for combining machine learning
with advanced web performance monitoring systems.

To simplify the task and improve the efficiency
of analysis, the dataset was reduced by limiting the
number of rows and selecting only the most essential
parameters. This approach minimized the volume of
processed data while maintaining focus on the key
metrics necessary for assessing the performance of
web applications. The selected data is stored in the
int64 numerical format, which allows for detailed
examination of relationships between variables and
enables the construction of regression models to pre-
dict web application performance:

< class ¢ pandas.core.frame.DataFrame >

Rangelndex: 10000 entries, 0 to 9999

dtypes : float64(8)

memory usage: 625.1 KB

onloadtime dominteractive domcontentload-ede-
ventend layoutcount \

count 10000.000000 10000.000000 10000.000000
10000.00000

mean 4849.606800 2165.309672 2345.924978
39.31970

standard 4577.348315 1961.989792 2084.977438
76.60846

min 0.000000 0.000000 0.000000 0.00000

25% 1820.750000 950.393750 1044.675000
7.00000

50%
20.00000

75%
44.00000

max 29919.000000 29423.770000 29423.805000
2566.00000

jsheaptotalsize img_initiated transfer size \

count 1.000000e+04 1.000000e+04

mean 1.422299¢+07 7.054487¢+05

std 1.344788e+07 2.328241e+06

min 1.843200e+06 0.000000e+00

25% 5.251072¢+06 5.130000e+02

50% 1.041613e+07 7.473500e+04

75% 2.032845e+07 5.419240e+05

max 1.884570e+08 8.057756e+07

css_initiated transfer size numberofrequests

count 1.000000e+04 10000.000000 ...

3501.000000 1634.337500 1779.035000

6152.500000 2761.778750 3023.257500

ISSN 2663-5941 (Print), ISSN 2663-595X (Online)

51

52

Bueni 3anucku THY imeni B.1. Bepuancbkoro. Cepis: Texniuni Hayku

The dataset was standardized and then underwent
an initial correlation analysis to identify relationships
between the variables (Fig. 1).

The data underwent normalization and prelim-
inary correlation analysis. Clear correlations were
found among key time-based metrics, such as onload-
time, dominteractive, and domcontentloadedeven-
tend. A strong correlation was also observed between
Jjsheaptotalsize and onloadtime, suggesting a link
between JavaScript memory usage and loading time.
Conversely, transfer sizes for images and CSS files
showed weak correlations with performance metrics.

In this research, a combination of linear regression
(LR), polynomial regression, decision tree, and neu-
ral network (NN) models was applied to evaluate web
application performance. These models were chosen
to capture a variety of complexities in the data.

Linear and polynomial regression serve as inter-
pretable baselines, suitable for identifying straight-
forward relationships in performance metrics.

Decision trees offer a flexible, non-linear alter-
native capable of capturing feature interactions,
while NN are ideal for modeling intricate, non-lin-
ear dependencies in high-dimensional data, offering
robust performance in dynamic environments. This
diverse set of models ensures a balance between
interpretability and predictive power. For the linear

onloadtime

dominteractive - 0.66
domcontentioadedeventend - 0.67
layoutcount - 0.49
pheaptotalsize - 0.72
img_initiated_transfer_size

¢ss_initiated_transfer_size —JRiw]

numberofrequests - 0.67 046 048

. '
@ o
£ 2
2 &
o L

[~
8 £

2

domcontentloadedeventend -

)
-~

layoutcount -

regression model, the LR class was used to fit the
training data and generate predictions. The model
achieved a high R? score of 0.936, explaining about
93.6% of the variance.

The resulting regression equation included key
predictors with both positive and negative impacts on
the target variable:

Y=2164.4+110.6-x,+1885.6-x,+(~13.4)-x,+(~9.6)-x,
+(—0.2)-x,+H(—80)-xs+H(—15.1)-x,, (1)

where y represents the predicted outcome, while
Xo ... xs are the predictor variables contributing to the
model.

The variable x; had the strongest positive effect,
while x; and xs contributed most significantly to
decreases in the predicted value, providing valuable
outcomes into performance influencers.

Polynomial regression was used to capture more
complex, non-linear relationships by introducing sec-
ond-degree polynomial features. The model achieved
a MAE of 190.91, MSE of 222,434.98, and an R? of
0.9336, indicating strong performance.

A decision tree model was also tested, which,
while capable of modeling non-linear patterns, under-
performed with a lower R? of 0.8628 and higher error
rates, possibly due to data noise or lack of tuning.

016 0.062 Ri.y)

015 002 gl

015 0.022 gt

-0.6

0.075 0.011 guvi]

0.024 0.0073 k%]

-0.4

0.59
1] '] 1

© “
N R T
C “w, " <
o & o =
s & g g
S
a g 2 =
o = e o
o e 8 =
£ 21 | “ 2

8 3 2

o 2

= 2]

£ c

g 3

E§ 9

Fig. 1. The correlation between the variables

Tom 36 (75) N2 4 2025

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

NN was designed with three dense layers (64, 32,
and 1 neurons) using ReLU activation and trained
for 50 epochs with the Adam optimizer. The model
achieved a MAE of 191.47, MSE of 215,483.79, and
an R? score of 0.9357, closely matching the perfor-
mance of polynomial regression. These results sug-
gest that while NN adds modeling power for complex
data, polynomial regression offers similar accuracy
with greater interpretability in this context.

The findings indicate that while NN offer a pow-
erful and flexible modeling framework, they do not
significantly outperform simpler regression models
in this particular case. LR model demonstrated the
best performance, achieving the lowest Mean Abso-
lute Error (MAE = 187.25) and Mean Squared Error
(MSE = 213,550.03), which confirms its reliability
and consistency in predictions.

Proposed software architecture designed for eval-
uating web application performance. It outlines the
full workflow — from initial data acquisition to anal-
ysis, reporting, and result visualization. The process
starts with the Driver module, which communicates
with the web application through the DevTools Proto-
col to gather performance-related data [10].

The gathered data is forwarded to the Data Anal-
ysis module, where regression techniques are applied
to examine the key factors influencing web applica-
tion performance. This step leads to the creation of
an Analysis Report. Within this framework, regres-
sion models are utilized to assess how specific per-
formance metrics affect the overall responsiveness of
the application.

Through regression analysis, correlations between
different parameters and page load efficiency are
identified, and the influence of each metric on perfor-
mance can be forecasted. Applying various regression
approaches allows for comparison of prediction accu-
racy and the selection of the most suitable method for
ongoing monitoring and optimization. After analysis,
the refined data is directed to a Classification module,
which organizes it for further interpretation. These
categorized outputs — referred to as Artifacts — are
sent to the Audit module, where they are transformed
into JSON-formatted results.

Proposed software system compiles a comprehen-
sive performance report covering several categories
such as PWA, Performance, Accessibility, and Best
Practices. It also considers multiple contextual fac-
tors including server and client-side data, user behav-
ior, timestamps, and data source characteristics.

The analyzed results are delivered through a
WebSocket connection and visualized in the Report
Results Display module, enabling real-time tracking

and evaluation of web application performance. For
the dataset and problem under research, LR proved
to be the most suitable approach due to its simplicity,
high efficiency, and strong accuracy. The table 1 sum-
marizes the performance of four ML models used for
web application performance prediction.

Table 1
Experimental research results
ML model MAE MSE R?
Linear regression 187.25 |213550.03 | 0.9363
Polynomial regression | 190.91 |222434.98| 0.9336
Decision tree 245.80 |459650.08| 0.8629
Neural network 191.48 [215483.79| 0.9357

LR model showed the best results with the lowest
MAE (187.25) and MSE (213550.03), and the highest
R? (0.9363), indicating high accuracy and stability.
Polynomial regression and the NN achieved compa-
rable results, slightly less accurate. The Decision Tree
performed the worst, with the highest errors and the
lowest R?, showing limited effectiveness for this task.

It effectively balances interpretability with pre-
dictive performance, making it an optimal choice for
this analysis.The research developed a methodology
for evaluating the performance of web applications,
implemented as a software-based solution. This solu-
tion can be integrated into web applications to auto-
matically analyze and monitor key performance indi-
cators. The primary metrics selected include the total
page load time (covering all resources such as images,
stylesheets, and scripts), and the time at which the
HTML document is fully loaded and parsed. Other
resources, like images and multimedia content, may
continue loading while the HTML is being processed.
Additional performance indicators include the num-
ber of layout recalculations (which affect rendering
efficiency), the total memory usage by JavaScript
objects, the total size of images transferred over the
network, the cumulative size of CSS files loaded dur-
ing rendering, and the number of server requests ini-
tiated during the page load. To streamline the analysis
process and enhance evaluation efficiency, the data-
set was reduced by focusing solely on these critical
parameters. This approach minimized the volume
of data processed while maintaining emphasis on
the most impactful performance metrics of the web
application. The developed software solution unifies
all key stages of web application performance assess-
ment — data gathering, processing, classification, and
reporting — into a cohesive and automated system.
This comprehensive approach enhances the efficiency
and accuracy of performance evaluation.

ISSN 2663-5941 (Print), ISSN 2663-595X (Online)

53

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepis: Texniuni Hayku

To boost web application performance based on
the analytical outcomes, it is advised to minimize
server requests by implementing data caching, con-
solidating multiple requests, and refining API inter-
actions. These measures help decrease server load
and enhance responsiveness. Incorporating asynchro-
nous requests can further reduce delays and optimize
resource usage. Effective monitoring of CPU and
memory consumption is essential for timely scaling —
either horizontally by adding more servers or verti-
cally by upgrading existing ones.

Reducing data transfer volume through compres-
sion techniques, image and static resource optimi-
zation, and the use of Content Delivery Networks
(CDNss) can significantly accelerate page load times.
Optimizing code, particularly by simplifying SQL
queries and computational algorithms, can also help
avoid unnecessary resource strain. Unlike conven-
tional methods that often depend on manual checks
or isolated performance indicators, this solution
leverages ML to automatically identify and predict
performance bottlenecks. It delivers real-time, data-
driven outcomes and offers practical recommenda-
tions such as caching improvements, asynchronous
communication, API optimization, and dynamic scal-
ing — resulting in a smarter and more proactive per-
formance management strategy. A software architec-
ture is proposed for intelligent analysis of JavaScript
web application performance. It collects numerical
data, applies regression analysis to assess key factors.
The software offers recommendations to developers
for optimizing performance and reducing server load.

Conclusions. Applying ML techniques to evalu-
ate the performance of web applications enhances the
precision of assessments and enables efficient pro-
cessing of extensive datasets. Regression models are
instrumental in uncovering key performance trends,
while deep NN allow for forecasting outcomes under

dynamic and complex scenarios. The proposed soft-
ware solution streamlines the entire evaluation pro-
cess by automating data collection, analysis, report-
ing, and live monitoring. Data is collected through
browser DevTools, analyzed using regression algo-
rithms, and presented in real-time via WebSocket
through a performance dashboard.

Optimization recommendations derived from this
system include minimizing the number of server
requests, utilizing asynchronous operations, imple-
menting resource scaling, compressing transmitted
data, and balancing loads across infrastructure. This
comprehensive and predictive methodology not only
increases the accuracy and speed of detecting perfor-
mance bottlenecks but also supports timely backend
and frontend optimization efforts, improving applica-
tion responsiveness and scalability.

Future work will focus on enhancing neural net-
work efficiency to speed up training processes and
integrating ML with advanced performance monitor-
ing tools for more insightful and automated diagnos-
tics. Techniques such as transfer learning or dynamic
learning rate adjustments can significantly shorten
training durations. Coupling ML models with plat-
forms like Google Lighthouse, New Relic, or Dat-
adog could provide intelligent real-time feedback
and adaptive system tuning. An additional direction
involves developing hybrid models that merge sta-
tistical analysis with ML-based anomaly detection
for deeper and more context-aware outcomes. For
instance, integrating time-series analysis of server
latency with NN capable of spotting unusual memory
usage patterns could help flag early warning signs of
overloads or memory leaks. Such preemptive detec-
tion facilitates proactive optimization, boosting both
the reliability and performance of web systems while
reducing operational costs by mitigating risks before
they escalate.

Bibliography:
1. Anis Z. A systematic review on regression testing for web-based applications. Journal of Software. 2015.

Vol. 10 (8). P. 971-990. DOI: 10.17706/jsw.10.8.971-990.

2. Ghattas M., Mora A. M., Odeh S. A novel approach for evaluating web page performance based on machine
learning algorithms and optimization algorithms. 47. 2025. Vol. 6 (2). Article 19. DOI: 10.3390/2i16020019.

3. Thompson H. S. Improved methodology for longitudinal web analytics using Common Crawl.
Communications of the ACM. 2024. Vol. 27 (6). P. 929-948. DOI: 10.1145/3614419.3644018.

4. Hort M., Kechagia M., Sarro F., Harman M. A survey of performance optimization for mobile applications.
IEEFE Transactions on Software Engineering. 2022. Vol. 48 (8). P. 2879-2904. DOI: 10.1109/TSE.2021.3071193.

5. Lun L., Zetian D., Hoe T. W., Juan X., Jiaxin D., Fulai W. Factors influencing user intentions on interactive
websites: Insights from the technology acceptance model. IEEE Access. 2024. Vol. 12. P. 122735-122756.

DOI: 10.1109/ACCESS.2024.3437418.

6. Shailesh S., Suresh P. V. A survey and analysis of techniques and tools for web performance optimization.
Journal of Information Organization. 2018. Vol. 8 (2). P. 31-57. DOI: 10.6025/ji0/2018/8/2/31-57.

54| Tom 36 (75) N2 4 2025

InpopmaTuKa, 06uKCII0BAIbHA TEXHIKA Ta aBTOMAaTH3aLlis

7. Leone J., Traini L. Enhancing trace visualizations for microservices performance analysis. Companion
of the 2023 ACM/SPEC International Conference on Performance Engineering. 2023. P.283-287.
DOI: 10.1145/3578245.3584729.

8. Willnecker F., Andreas B., Wolfgang G., Helmut K. Using Dynatrace monitoring data for generating
performance models of Java EE applications. Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering. 2015. P. 103—104. DOI: 10.1145/2668930.2688061.

9. Oleshchenko L., Burchak P. Web application state management performance optimization methods. Lecture
Notes on Data Engineering and Communications Technologies. 2023. Vol. 181. P. 59-74. Springer, Cham.
DOI: 10.1007/978-3-031-36118-0_6.

10. Oleshchenko L.M., Burchak P.V. Software system architecture development for intelligent analysis
of web application performance metrics. Bueni sanucku Tagpiticbkoeo HayioHanbHO2O YHIGEpCUmMemY iMeHi
B.1. Bepuaocwvrozo. Cepisn.: Texniuni nayku. Tom 35 (74). Ne 4. 2024. C. 141-150. https://doi.org/10.32782/2663-
5941/2024.4/22.

Bypuak I1.B., Onemenko JI.M. IPOT'PAMHUI ®PEVMMBOPK MAIIIMHHOI'O HABUAHHSI JIJIS
IMPOTHO3YBAHHS TA ONTUMIBAIII ITPOJITYKTUBHOCTI BEB3ACTOCYHKIB

Y ecmammi npedcmasneno npoecpammuuil ppetimeopk 0151 aHanizy ma nPocHO3Y8aAHH NPOOYKMUBHOCHI 8e0-
3ACMOCYHKIB 3 BUKOPUCTNAHHAM MeMOO0i8 MAUUHHO20 HABYAHHA. 3aMicmb mpaouyiino2o nioxooy 00 mecmy-
BAHHS NPOOYKMUBHOCMI O)10 3aNPONOHOBAHO ABMOMAMU308AHUL KOHBEED, AKUL 30iliCHIOE 30ip, 00pOOKY ma
MOOENOBANHS KIIOYOBUX CUCHEMHUX MempUK — Makux 5K 4ac ionosioi cepeepa, GUKOPUCIAHHSL Nam 'simi,
HABAHMAIICEHHS. HA NPOYECOp i YYMAUBICmy iHmepghelicy 3 Memor npoaKmugHO20 GUSIGNEHHS. A VYCYHEHHS.
npobrem npodykmusHocmi. s 0ocaiodcenns 6yno suxopucmano Haobip danux iz nonao 200 000 peanvrux
3anUCi8, WO GKIIOYAIOMb NOKAZHUKY YACY 3A6AHMAIICEHHS] 6e0CTNOPIHKY, NEPEPAXYHKY MAKEmMd, CNONCUBAHHS
nam ’ami JavaScript ma nponyckHoi 30amHocmi Mepexci.

YV mooentosanvuuil xongeep 6yn0 inmezpo8ano OeKilbKa ANeOPUMMIE MAWUHHO20 HABYAHHS, 30KpeMd,

JIHIUHY pezpeciio, NOMTHOMIANbHY pezpeciio, 0epesa piueHb ma HeupoOHHY Mepexcy Onsl OYIHIOBAHHA IXHbOI

ehexmusHocmi y npoeHo3Y8aAHHI NPOOYKMUBHOCMI 3ACMOCYHKIG. 3a pe3ynomamamu eKcnepumesmis Hau-
Kpawyy mounicmos noxasaia niuitina peepecia (MAE = 187,25, R? = 0,9357), wo ceiduumev npo cuibhuil
JUHITIHUL 36 30K Y OaHux. HellpoHHa mepedica makoxic npooemMoHCcmpy8and 6UCOKY MOYHICMb [hepesazu npu
MOOeNo8anHi OUHAMIYHUX HeTHIIHUX 3aiexcHocmeli. Po3pobnena npoepamua cucmema peanizogana 3 UKo-
pucmanuam mexronoeitt Python: Pandas, NumPy, Matplotlib, Seaborn, Scikit-learn i TensorFlow.

Y pesynomami npogedenoco docniodicenns Oyio cmeopeHo macuimabosare, a8MomMamu3oeane ma iHmep-
npemosane Npocpamue piuleHHs O NPOSHO3HOL OiacHOCMUKYU ma onmumizayii npooykmuerHocmi geb3ac-
MOCYHKIB. 3anponoHO8aHa NPOSPAMHA CUCMEMA MAKOoXHC 0036014€ (hopMY8amu Kame2opu3oeani 36imu 3
pexomMeHOayiamMu wooo NOKpaujeHHs npooyKmueHocmi eed3acmocynkis. Ompumani pesyriomamu niomeep-
0ofCyrOmMb ehekmuHicms i OOYLIbHICMb BUKOPUCTNAHHA MeMO00i8 MAUUHHO20 HABYAHHS 8 CYUACHUX CUCeMaX
MOHIMOPUH2Y NPOOYKMUBHOCI 6€03ACMOCYHKIB.

Knrwuosi cnosa: npozcpamuuil ¢pelimeopk, MOHIMOpUH2 NPOOYKMUBHOCMI NPOSPAMHO20 3d0e3neyeHHs,
MAWUHHe HABYAHHS, NPOSHO3HA AHALIMUKA, ONMUMI3AYIs 6eDCUCeM, peepeciiini MOOei, HeUPOHHI MepediCi,
Python, TensorFlow, npozno3yeants npooyKmueHocmi 6e03acmocyHKIs.

Jara nagxomxkenns crarti: 17.07.2025

Hara npuiinstrs crarti: 24.07.2025
Onyo6unikoBano: 27.10.2025

ISSN 2663-5941 (Print), ISSN 2663-595X (Online)

55

